Visual phototransduction components in cephalopod chromatophores suggest dermal photoreception.
نویسندگان
چکیده
Cephalopod mollusks are renowned for their colorful and dynamic body patterns, produced by an assemblage of skin components that interact with light. These may include iridophores, leucophores, chromatophores and (in some species) photophores. Here, we present molecular evidence suggesting that cephalopod chromatophores - small dermal pigmentary organs that reflect various colors of light - are photosensitive. RT-PCR revealed the presence of transcripts encoding rhodopsin and retinochrome within the retinas and skin of the squid Doryteuthis pealeii, and the cuttlefish Sepia officinalis and Sepia latimanus. In D. pealeii, Gqα and squid TRP channel transcripts were present in the retina and in all dermal samples. Rhodopsin, retinochrome and Gqα transcripts were also found in RNA extracts from dissociated chromatophores isolated from D. pealeii dermal tissues. Immunohistochemical staining labeled rhodopsin, retinochrome and Gqα proteins in several chromatophore components, including pigment cell membranes, radial muscle fibers, and sheath cells. This is the first evidence that cephalopod dermal tissues, and specifically chromatophores, may possess the requisite combination of molecules required to respond to light.
منابع مشابه
An Unexpected Diversity of Photoreceptor Classes in the Longfin Squid, Doryteuthis pealeii
Cephalopods are famous for their ability to change color and pattern rapidly for signaling and camouflage. They have keen eyes and remarkable vision, made possible by photoreceptors in their retinas. External to the eyes, photoreceptors also exist in parolfactory vesicles and some light organs, where they function using a rhodopsin protein that is identical to that expressed in the retina. Furt...
متن کاملDynamic Skin Patterns in Cephalopods
Cephalopods are unrivaled in the natural world in their ability to alter their visual appearance. These mollusks have evolved a complex system of dermal units under neural, hormonal, and muscular control to produce an astonishing variety of body patterns. With parallels to the pixels on a television screen, cephalopod chromatophores can be coordinated to produce dramatic, dynamic, and rhythmic ...
متن کاملThe structure-function relationships of a natural nanoscale photonic device in cuttlefish chromatophores.
Cuttlefish, Sepia officinalis, possess neurally controlled, pigmented chromatophore organs that allow rapid changes in skin patterning and coloration in response to visual cues. This process of adaptive coloration is enabled by the 500% change in chromatophore surface area during actuation. We report two adaptations that help to explain how colour intensity is maintained in a fully expanded chr...
متن کاملNonvisual photoreception in the chick iris.
The embryonic chicken iris constricts to light ex vivo, but with characteristics atypical of visual phototransduction. The chick iris was most sensitive to short-wavelength light, demonstrating an action spectrum consistent with cryptochrome rather than with opsin pigments. Pupillary responses did not attenuate after saturating light exposure, but showed paradoxical potentiation. Iris photosens...
متن کاملCephalopod chromatophores: neurobiology and natural history.
The chromatophores of cephalopods differ fundamentally from those of other animals: they are neuromuscular organs rather than cells and are not controlled hormonally. They constitute a unique motor system that operates upon the environment without applying any force to it. Each chromatophore organ comprises an elastic sacculus containing pigment, to which is attached a set of obliquely striated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 218 Pt 10 شماره
صفحات -
تاریخ انتشار 2015